Rumus Luas Lingkaran, Cara Menghitung dan Contoh Soal

Pexels/Louis Bauer
Ilustrasi menghitung rumus luas lingkaran
26/10/2023, 13.45 WIB

Mata pelajaran matematika tentang geometri mengajarkan rumus bangun datar, termasuk menghitung luas lingkaran. Lingkaran merupakan bangun datar yang memiliki satu sisi lengkung dan membentuk sudut 360 derajat. Jarak setiap titik pada sisi luar lingkaran dengan titik pusat lingkaran adalah sama dan disebut dengan jari-jari (r) atau radius.

Ukuran jari-jari lingkaran sama dengan setengah diameter. Definisi diameter adalah segmen garis pada lingkaran yang melalui pusat lingkaran. Rumus diameter lingkaran yaitu d = 2 × r.

Dalam bangun lingkaran, keliling lingkaran adalah jarak dari suatu titik pada lingkaran dalam satu putaran hingga kembali ke titik semula. Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya akan mendekati 3,14159265358979… atau disingkat menjadi 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π).

Rumus Luas Lingkaran

Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya. Luas lingkaran dapat dihitung dengan mengetahui nilai Pi (π) dan jari-jari lingkaran (r). Rumus luas lingkaran adalah L = π × r × r . L merupakan lambang luas lingkaran. Sedangkan nilai π yaitu 22/7 atau 3,14.

Contoh soal:

Sebuah lingkaran memiliki jari-jari 7 cm. Tentukan luas lingkaran tersebut!

Jawaban:

r = 7 cm

Maka luas lingkaran adalah:

L = π × r × r

L = 22/7 × 7 × 7

L = 154 cm2

Selain rumus satu lingkaran, terdapat variasi rumus lainnya sebagai berikut.

Rumus Luas Setengah Lingkaran

Adapun rumus luas setengah lingkaran adalah (π x r x r)/2.

Contoh soal:

Sebuah lingkaran memiliki jari-jari 10 cm, maka luas setengah lingkaran adalah…

Jawaban:

Rumus setengah lingkaran adalah (π x r x r)/2.

Maka L = (3,14 x 10 x 10)/2 = 157 cm2.

Jadi, luas setengah lingkaran tersebut adalah 157 cm2.

Rumus Luas Seperempat Lingkaran

Rumus luas seperempat lingkaran adalah L = ¼ × luas lingkaran atau ¼ × π × r × r.

Contoh soal:

Jika garis tengah sebuah lingkaran 16 m, maka luas seperempat lingkarannya adalah…

Jawaban:

Diketahui garis tengah atau diameter sepanjang 16 m, maka jari-jarinya adalah 8 m.

Luas ¼ lingkaran = ¼ × π × r × r = ¼ × 3,14 × 8 × 8 = 50,24 m2.

Maka, luas seperempat lingkaran tersebut adalah 50,24 m2.

Rumus Keliling Lingkaran

Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.

Rumus keliling lingkaran adalah K = 2 x π x r atau K = π x d

Keterangan:

K: Keliling lingkaran

π: 22/7 atau 3,14

r: Jari-jari lingkaran

Adapun rumus Keliling ¾ Lingkaran adalah K = r + r + busur 3/4 lingkaran atau K = 2r + (¾ x π x d)

Contoh soal:

Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…

Jawaban:

K = π x d

K = 22/7 x 28

K = 88 cm

Maka, hasil keliling lingkaran adalah 88 cm.

Contoh soal:

Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?

Jawaban:

K = 2 x π x r

K = 2 x 22/7 x 20

K = 125,6 cm

Unsur dan Bagian Lingkaran

Merujuk pada buku Matematika Plus oleh Husein Tampomas, jar-jari lingkaran adalah ruas garis yang menghubungkan suatu titik pada lingkaran dengan titik pusatnya. Jari-jari lingkaran dapat didefinisikan sebagai jarak suatu titik pada lingkaran dengan titik pusatnya.

Perhatikan gambar berikut.

Unsur dan Bagian Lingkaran (Matematika Plus/Penerbit Yudhistira)

Jari-jari lingkaran dilambangkan dengan r atau R. Pada gambar tersebut, ruas garis OA = r, OB = r, dan ON = r adalah jari-jari lingkaran dengan pusat O.

Tali busur adalah ruas garis yang menghubungkan dua titik pada lingkaran. Pada gambar tersebut, ruas garis CD dan AB adalah suatu tali busur. Diameter atau garis tengah adalah tali busur yang melalui titik pusat lingkaran.

Dalam gambar tersebut, ruas garis AB adalah diameter pada lingkaran O. Dalam hal ini, dikatakan bahwa A dan B berhadapan diametral. Diameter lingkaran dilambangkan dengan d atau D. Hubungan jari-jari (r) dan diameter (d) pada suatu lingkaran dirumuskan sebagai berikut:

r = 1/2 d atau d = 2r

Apotema adalah ruas garis yang ditarik dari titik pusat suatu lingkaran tegak lurus pada sebuah tali busur. Dapat disimpulkan bahwa apotema adalah jarak titik pusat lingkaran dengan tali busurnya. Pada gambar, ruas garis OM adalah suatu apotema.

Anak panah adalah ruas garis perpanjangan apotema sampai pada busur lingkaran. Garis MN dalam gambar diatas adalah suatu anak panah.

Sudut Pusat dan Keliling Lingkaran

Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.

Sudut keliling lingkaran dibedakan menjadi:

  • Sudut dalam keliling, yaitu sudut yang terjadi jika dua buah tali busur berpotongan di dalam lingkaran.
  • Sudut luar keliling, yaitu sudut yang terjadi jika dua buah tali busur berpotongan di luar sebuah lingkaran.

Sifat-Sifat Lingkaran

Dirangkum dari Buku Ajar Geometri Dan Pengukuran Berbasis Pendekatan Saintifik, sifat-sifat lingkaran adalah:

  • Lingkaran adalah suatu bangun datar berupa kurva mulus tertutup.
  • Besar sudutnya adalah 360 derajat.
  • Mempunyai titik pusat.
  • Seluruh jari-jari lingkaran sama panjang.
  • Panjang diameter sama dengan dua kali panjang jari-jari.
  • Jari-jari merupakan ruas garis yang menghubungkan titik pusat ke tepi lingkaran.
  • Simetri lipat dan simetri putar pada lingkaran tidak terhingga.

Demikian pembahasan tentang rumus luas lingkaran, cara menghitung, dan contoh soal.