Mencermati Contoh Soal Persamaan Lingkaran

Contoh soal persamaan lingkaran dapat diselesaikan dengan bentuk persamaan x2+y2=r2. Tapi, lingkaran yang memiliki pusat (a,b) dengan jari-jari r, maka bentuk persamaannya (x-a)2+(y-b)2= r2.
Image title
3 Agustus 2022, 14:28
contoh soal persamaan lingkaran
Pexels/Louis Bauer
Ilustrasi, seorang siswa mengerjakan contoh soal persamaan lingkaran.

Persamaan lingkaran adalah materi dalam pelajaran matematika yang dapat kita temui di bangku sekolah. Pelajaran yang memerlukan rumus tertentu dalam penyelesaiannya ini berhubungan dengan bangun lingkaran dan unsur-unsur di dalamnya.

Pada artikel kali ini akan dibahas lebih mendalam tentang materi persamaan lingkaran dan contoh soal persamaan lingkaran.

Materi Persamaan Lingkaran

Lingkaran merupakan bangun datar yang memiliki satu sisi lengkung dan membentuk sudut 360 derajat. Jarak setiap titik pada sisi luar lingkaran dengan titik pusat lingkaran adalah sama dan disebut dengan jari-jari (r) atau radius.

Persamaan lingkaran adalah persamaan matematika dengan dua variabel yang memiliki bentuk lingkaran pada kordinat kartesius.

Advertisement

Dalam soal persamaan lingkaran, biasanya terdapat hubungan antara titik pusat dengan titik tertentu pada lingkaran. Mengutip Zenius, terdapat dua aturan yang perlu dipahami dari suatu bentuk persamaan lingkaran, yaitu pusat (O,O) dan (a,b) dengan masing-masing berjari-jari r.

Apabila sebuah lingkaran memiliki pusat (O,O) dengan jari-jari r, maka bentuk persamaannya x2+y2=r2.

Jika suatu lingkaran memiliki pusat (a,b) dengan jari-jari r, maka bentuk persamaannya (x-a)2+(y-b)2= r2.

Contoh Soal Persamaan Lingkaran

Dirangkum dari berbagai sumber terkait, berikut kumpulan contoh soal persamaan lingkaran:

1. Sebuah lingkaran dengan pusat (1,2) dan memiliki jari-jari 5. Tentukan persamaan lingkaran tersebut!

Jawaban:

p = (1,2) -> pusat lingkaran (a,b)

r = 5

Karena pusat lingkarannya (a,b), digunakan aturan:

(x-a)2+(y-b)2= r2

(x-1)2+(y-2)2= 25

Konversi bentuk standar ini ke bentuk umum:

x2-2x+1+y2-4y+4= 25

x2+y2-2x-4y-20= 0

Sehingga, bentuk umum persamaan lingkaran dengan pusat (2,3) dan jari-jari 5 adalah x2+y2-2x-4y-20=0.

2. Tentukan persamaan lingkaran di titik pusat (4,3) dan melalui titik (0,0)!

Jawaban:

a = 4

b = 3

x = 0

y = 0

Pertama-tama, tentukan r2 lingkaran dengan menggunakan persamaan berikut:

(x-a)2+(y-b)2= r2

(0-4)2+(0-3)2= r2

16+9 = r2

r2 = 25

Jadi, persamaan lingkaran sebagai berikut:

(x-4)2+(y-3)2= 25

3. Persamaan lingkaran L= (x–5)²+(y–1)²= 1 memotong garis y = 1. Hitunglah persamaan garis singgung lingkarannya?

Jawaban:

Diketahui persamaan lingkaran (x–5)²+(y–1)²= 1, y = 1 di titik:

(x–5)²+(y–1)²= 1

(x–5)²+(1–1)²= 1

(x–5)²+0= 1

x–5= 1 atau x–5= -1

x= 6 atau x= 4

Jadi, terdapat dua titik potong yaitu (6,1) dan (4,1)

Kemudian hitung persamaan lingkarannya seperti di bawah ini:

(x–5)²+(y–1)²= 1

x²–10x+25+y²–2y+1= 1

x²+y²–10x–2y+26= 1

x²+y²–10x–2y+25= 0

Perhatikan persamaan garis singgung yang melalui titik (6,1) terhadap lingkaran L yaitu:

x1.x+y1.y+a(x1+x)+b(y1+y)+c= 0

6x+y–½.10(6+x)–½.2(1+y)+25= 0

6x+y–5(6+x)–1(1+y)+25= 0

6x+y–30–5x–1–y+25= 0

x – 6 = 0

x = 6

Persamaan garis singgung yang melalui titik (4,1) terhadap lingkaran L ialah:

x1.x+y1.y+a(x1+x)+b(y1+y)+c= 0

4x+y–½.10(4+x)–½.2(1+y)+25= 0

4x+y–5(4+x)–1(1+y)+25= 0

4x+y–20–5x–1–y+25= 0

-x + 4 = 0

-x = -4

x = 4

Jadi, persamaan garis singgung lingkarannya adalah x=6 dan x=4.

4. Tentukan:

a. Persamaan lingkaran yang berpusat di O(0,0) dan memiliki jari-jari:

i). r = 4

ii). r = 4√3

b. Persamaan lingkaran yang berpusat di O(0,0) dan melalui titik (6,−8).

c. Jari-jari lingkaran dengan persamaan:

i). x2 + y2 = 121

ii). x2 + y2 = 128

Jawaban:

a. Persamaan lingkaran yang berpusat di O(0,0) dan berjari-jari r adalah x2+y2= r2

i). r = 4, maka persamaannya adalah x2+y2= 42 <> x2+y2= 16

ii). r = 4√3, maka persamaannya adalah x2+y2= (4√3)2 <> x2+y2= 48

b. Persamaan lingkaran yang berpusat di (0,0) adalah x2+y2= r2

Lingkaran melalui titik (6,-8), sehingga diperoleh 62+(-8)2= r2

<> 36+64= r2

<> r2=100

Jadi, persamaan lingkaran dengan pusat O(0,0) dan melalui titik (6,-8) adalah x2+y2=100

c. Jari-jari lingkaran dengan persamaan:

i). x2+y2= 121

x2+y2= r2 >> r2 = 121 >> r=√121= 11

ii). x2+y2= 128

x2+y2= r2 >> r2= 128 <> r =√128=√64×2= 8√2

Editor: agung
News Alert

Dapatkan informasi terkini dan terpercaya seputar ekonomi, bisnis, data, politik, dan lain-lain, langsung lewat email Anda.

Dengan mendaftar, Anda menyetujui Kebijakan Privasi kami. Anda bisa berhenti berlangganan (Unsubscribe) newsletter kapan saja, melalui halaman kontak kami.
Video Pilihan

Artikel Terkait